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ABSTRACT: Snow aggregate shapes and orientations have long been known to exhibit substantial variability. Despite this

observed variability, most weather and climate prediction models use fixed power-law functions that deterministically map

particle size to mass and fall speed. As such, integrated quantities like precipitation and self-aggregation rates currently

ignore nonlinear effects resulting from variation in shape and orientation for aggregates of the same size. This study

therefore develops an analytic framework that couples an empirically based bivariate distribution of ellipsoid shapes to

classical hydrodynamic theory so as to capture an appropriate dispersion of masses, projected areas, and fall speeds for an

assumed size distribution. For a fixed aggregate size, shape variations produce approximately 60.13m s21 standard devi-

ation of fall speed which increases the mass flux fall speed dispersion by more than 100% over traditional microphysics

models. This increased fall speed dispersion results predominantly from shape-inducedmass dispersion whereas orientation

and drag dispersion play a lesser role. Shape variations can increasemass- and reflectivity-weighted fall speeds by up to 60%

of traditional models whereas self-aggregation rates can increase by a factor of 100 for very small slope parameters. This

implies that aggregate shape variations effectively forestall the theorized onset of fall speed distribution narrowing and

subsequent quenching of the aggregation process. As a result, it is likely that secondary ice formation is necessary to prevent

an ever decreasing slope parameter. The mathematical theory presented in this study is used to develop simple correction

factors for snow forecast and climate models.

KEYWORDS: Atmosphere; Snow; Winter/cool season; Cloud microphysics; Spectral analysis/models/distribution; Cloud

parameterizations

1. Introduction

A delicate balance of gravitational and drag forces governs

the terminal fall speed of snowflake aggregates. The resulting

distribution of aggregate fall speeds and masses are particu-

larly important for predicting surface precipitation rates and

cloud longevity. However, the variety of aggregate shapes

complicates this balance because they affect both forces

simultaneously: particle masses directly dictate the gravi-

tational force whereas the spatial distribution of this mass

(often characterized by a quantity called the area ratio)

dictates the aggregate’s drag. That snow aggregate shapes

affect both these quantities suggests potentially substantial

nonlinearities in terminal fall speed calculations which,

in turn, affects the growth processes themselves. Various

aggregate orientations resulting from fall behavior such as

oscillations, tumbling, or swirling (Kajikawa 1982) com-

pound these nonlinear relationships between shape and

fall speed by further altering drag.

Most current numerical weather prediction (NWP) and cli-

mate models characterize this balance by relating aggregate

size to mass and fall speed using one-to-one power-law rela-

tions. While environmental corrective factors are often used in

conjunction with these power-law functions, integral moments

of the particle size distribution (PSD) are heavily weighted by

both the chosen fall speed–size (yt–D) and mass–size (M–D)

power-law parameters. Therefore, predicted integrated quan-

tities that depend upon both mass and fall speed (e.g., pre-

cipitation rates) are accurate only if correlation terms between

both microphysical quantities are relatively small. There is

however some evidence that these nonlinear correlation terms

can produce profound effects on bulk quantities. For example,

Passarelli and Srivastava (1979) used an assumed rectangular

probability distribution of fall speed dispersion about mean

particle mass and density to examine the potential effects

on the snow self-aggregation kernel. They found that this in-

troduction of fall speed variation dramatically increased the

collection kernel for the larger end of the size spectrum.A later

study by Böhm (1992) reiterated these results but provided the

following sober account on its validity: ‘‘These highly idealiz-

ing assumptions were suitable for a first investigation of the

significance of these effects, but they obviously are not very

accurate.’’ Multiple studies (e.g., Passarelli and Srivastava

1979; Sasyo and Matsuo 1980; Böhm 1992; Schmitt et al. 2019)

prescribe a fixed probability distribution of aggregate fall

speeds about size (mass). Assuming a strictly one-to-one mass

and fall speed relationship permits analytical treatment within

the collection integrals but does not take into account the

positive correlation between mass and fall speed variations.

Ignoring the appropriate correlations between mass, projected

Supplemental information related to this paper is available at

the Journals Online website: https://doi.org/10.1175/JAS-D-20-

0128.s1.

Corresponding author: Edwin Lee Dunnavan, edwin.dunnavan@

noaa.gov, dunnavel@ou.edu

JANUARY 2021 DUNNAVAN 51

DOI: 10.1175/JAS-D-20-0128.1

� 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/10/21 12:44 PM UTC

https://doi.org/10.1175/JAS-D-20-0128.s1
https://doi.org/10.1175/JAS-D-20-0128.s1
mailto:edwin.dunnavan@noaa.gov
mailto:edwin.dunnavan@noaa.gov
mailto:dunnavel@ou.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


area, and fall speed necessarily eliminates potentially impor-

tant nonlinear terms that influence particle fluxes and collec-

tion rates. Radar studies have generally shown that nonlinear

microphysical relationships between correlated variables are

important for predicting snowfall rates (Wood et al. 2015).

However, there is currently no encompassing mathematical

theory capable of incorporating an appropriate dispersion of

particle properties so as to capture their correct correlations,

variations, and nonlinear relationships while maintaining an

analytic framework.

In theory, the semiempirical methodology of Böhm (1989)

and others can be used to mathematically and synergistically

connect particle properties such as size, shape, and density to

fall speed. However, the sheer variety of different aggregate

forms complicates the notion of shape and density for a given

aggregate and how these factors should influence fall speed.

For microphysical quantities such as snow precipitation rates

and radar quantities such as Doppler velocity, mass directly

appears in the integration kernels as well as in the charac-

terization of fall speed, thereby further increasing nonlinear

complexity. Although various semiempirical studies employ

the same general drag parameterization approach, the

specifics of each study give slightly different forms and

parameters that dictate the fall speed–dimensional power-law

parameters.

Recently, ground-based observations have provided a much

better understanding of snow aggregate shape and orientation

distributions. For instance, theMulti-Angle Snowflake Camera

(MASC) imager (Garrett et al. 2015) permits multiple viewing

angles of the same particle. This can help mitigate orientation

uncertainties that obfuscate shape estimation. Garrett et al.

(2015) used the MASC to develop distributions of aggregate

shapes, sizes, fall speeds, and orientations. They discovered

that orientations, in particular, exhibit a much broader distri-

bution that becomes even broader with increasing turbulence

than previously thought.More recently, Jiang et al. (2019) used

machine learning techniques to estimate aggregate shapes and

orientations from the MASC multiple viewing angles. To do

this, Jiang et al. (2019) used triaxial ellipsoids as proxies for

aggregate shapes and found that a bivariate beta distribution of

ellipsoid aspect ratios could capture the full observed distri-

bution. This distribution presents a very different conception

of aggregate shapes than the spherical (e.g., Brandes et al. 2007)

and oblate (e.g., Hogan et al. 2012) assumptions given in pre-

vious observational studies. Dunnavan et al. (2019) extended

the work of Jiang et al. (2019) so as to provide ellipsoid fits to

Monte Carlo simulated aggregates and discovered that these

simulated aggregates also assume the same type of bivariate

beta distribution form as estimated from the MASC observa-

tions. Through a series of Monte Carlo simulations, Dunnavan

et al. (2019) were able to explore ellipsoidal and fractal sensi-

tivities of generated aggregates to the shape of their various

constituent particles.

Traditional power-law approaches assume that particle

size (often maximum dimension or sphere equivalent-volume

diameter) follows an inverse-exponential or gamma distribu-

tion. Properties such as shape, mass, and fall speed are dictated

in terms of a power law according to this size. A simple

substitution of variables in the assumed size distribution using

these power-law functions rescales the distribution in the form

of a Weibull distribution for inverse-exponential size distri-

butions or the Amoroso or generalized gamma distribution for

gamma size distributions. As a result, traditional approaches

either explicitly or implicitly incorporate ice particle shape

in calculations by representing aspect ratios as power-law

functions of size and the power-law transformation into other

variables (e.g., mass or fall speed) leads to a more general

distribution function within the gamma family. However, the

ground-based observations shown in Jiang et al. (2019) and

Dunnavan et al. (2019) suggest that snow aggregate shapes

are only a weak function of size and that a separate distri-

bution function, the bivariate beta distribution, can appropri-

ately capture its functional form. A fundamental question is,

therefore, What would be the distribution form for a variable

like mass or fall speed with gamma distributed size and bivariate

beta distributed shape? Furthermore, how would distribution

moments change accordingly, and would these moments affect

highly nonlinear bulk properties such as snow precipitation

rates (i.e., mass-weighted fall speed) or self-aggregation of the

second mass moment (reflectivity)?

This study answers these questions by establishing a

mathematical foundation for convolving size and shape

when describing snow aggregate properties. These additional

mathematical tools generalize the conventional gamma dis-

tribution power-law transformations with the use of Mellin

integral transforms. While the mathematical basis for these

integral transforms is well established, the resulting general

distribution function, Fox’s H function, appears to be rather

esoteric even within the mathematics community. Moreover,

H-function behavior, properties, and various notations will

undoubtably appear alien and confusing to those unfamiliar

with its use. Therefore, the mathematical details of the H

function are presented in the online supplementary materials

section. This deep mathematical analysis can, in theory, be

used in conjunction with observed distributions from instru-

ments such as the MASC (e.g., Garrett et al. 2015), thus giving

an additional level of comparison between observations and

microphysical models. This new mathematical framework

also provides a vehicle for connecting various particle

properties together when developing microphysical pa-

rameterizations. While these transforms can lead to more

complicated expressions for distribution functions of par-

ticular variables, the underlying moments of an H-function

distribution are still given in terms of gamma function ratios as

with the gamma distribution. Therefore, the moments them-

selves still exist within the conventional microphysics frame-

work and would not severely complicate implementation into

microphysics models.

2. Theory and methodology

a. Distribution convolutions and product moments

The gamma distribution as presented within cloud micro-

physics literature is often shown in one of two different forms:

n(D)5N
0
Dm exp(2LD) , (1a)
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where Eq. (1a) often describes observed size distributions (e.g.,

Heymsfield et al. 2002a; McFarquhar et al. 2007) and Eq. (1b)

often describes microphysical model size distributions (e.g.,

Walko et al. 1995; Harrington et al. 2013). The term L is

commonly referred to as the ‘‘slope’’ parameter whereasDn

is sometimes called the ‘‘characteristic diameter’’ (all var-

iables used throughout this paper are also defined in the

appendix). Observations often use Eq. (1a) when deter-

mining parameters N0 and L and sometimes m through the

use of nonlinear least squares fitting or method-of-moment

fitting (see McFarquhar et al. 2007). This means that

the total number mixing ratio of ice particles, Ni, is a free

parameter that is dictated by the combination of fitted

parameters N0, L, and m. Microphysics models, on the

other hand, often use predictive equations for this number

mixing ratio. Therefore, the scaled form of Eq. (1b) permits

simpler expressions for the various moments of the size

distribution. These moments relate to fundamental quan-

tities such as ice water content (IWC), precipitation rates

(mass flux), or reflectivity (assuming Rayleigh scattering).

Throughout this study m 5 0 as a way to simplify the analysis

and sensitivity tests. m5 0 is often observed in nature but can

deviate from this value (e.g., Brandes et al. 2007) which can

influence how mass is distributed across the size spectrum.

Further studies would be required to fully investigate these

other factors.

For this work, triaxial ellipsoids represent ice particle ag-

gregates where the ellipsoid semimajor dimension a follows a

gamma distribution and the ellipsoid aspect ratios, uba [ b/a

and uca [ c/a, follow a bivariate beta distribution where

a $ b $ c. The bivariate beta distribution is given in

Dunnavan et al. (2019) as

~n(u
ba
,u

ca
)5

1

B(a
ba
,b

ba
)B(a

ba
1b

ba
,b

cb
)
u
aba1bba21
ca

3 (u
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2u
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)bcb21u

2bba2bcb

ba (12u
ba
)bba21 , (2)

where aba, bba, and bcb are distribution parameters and B(x, y)

is the beta function. The MASC data from Dunnavan et al.

(2019) suggest that aba 5 6.9793, bba 5 4.3502, and bcb 5
5.3437 for ground-based snow. These values will be used

throughout this work to represent such snowfall. Product mo-

ments of this bivariate distribution are

hum
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. (3)

The general form for an algebraic combination of micro-

physical variables is given by

j5a
j
azau

zba
ba u

zca
ca , (4)

where j is a microphysical quantity that depends on a, uba, and

uca. For example, aggregate ellipsoid volumes can be described

as Ve 5 (4/3)pa3ubauca, where za 5 3 and zba 5 zca 5 1.

Distribution moments of n(j) are a product of Eq. (3) and the

traditional gamma distribution moments of n(a). The general

convolved distributions for j can be expressed in terms of

Fox’s H function (Fox 1961) where each form is derived and

explained in detail within the supplementary materials section.

Equation (4) can be used in the same way as traditional M–D

and yt–D relationships. The following section derives new el-

lipsoid power-law parameters in Eq. (4) that incorporate a

dispersion of shape and orientation. It is important to realize

that ellipsoids only represent a mathematically convenient

proxy for aggregate shapes and densities which permit an

already established semiempirical methodology. Additional

details and uncertainties associated with the impact of mor-

phology, turbulence, and other factors on fall speed require

a special study and is therefore outside the scope of the

current paper.

b. Fall speed

Much of the theory and mathematical treatment of hydro-

meteor fall speed can be attributed to a series of papers by

Hannes Böhm (Böhm 1989, 1992). In these papers, hydrome-

teors are imagined as reduced-density spheroids with terminal

fall speeds that are governed by the balance of gravitational

and drag forces. The theory itself is semiempirical with the drag

force component based off of the theory and experiments of

spheres conducted by Abraham (1970). Further modification

of Böhm’s work has been developed by Mitchell (1996),

Heymsfield et al. (2002a), Khvorostyanov and Curry (2002),

Mitchell and Heymsfield (2005), Khvorostyanov and Curry

(2005), and Heymsfield and Westbrook (2010). These addi-

tional studies generalized the original equations of Böhm
(1989) such that particles were not necessarily treated

as spheroids. This allowed Mitchell (1996), Mitchell and

Heymsfield (2005), and Heymsfield and Westbrook (2010)

to parameterize fall speed using in situ or laboratory derived

power-law relations for the particle projected area Apart.

The following is a further extension of these works but with

the introduction of a bivariate ellipsoid shape distribution

based on observed aggregates (Dunnavan et al. 2019; Jiang

et al. 2019).

The general terminal fall speed equation is given in Böhm
(1989) as

y
t
5
1

2

h
a

r
a

ffiffiffiffiffiffiffiffiffiffi
p

A
proj

s
N

Re
, (5)

whereNRe is the Reynolds number, ha is the dynamic viscosity,

ra is the air density, and Aproj is the ellipsoidal shell projected

area onto the horizontal x–y plane (see Fig. 1 from Böhm
1989). For this comparison study, aggregates are imagined as

spheres and ellipsoids where the effective density decreases

as a function of size. A common interpretation of a reduced-

density sphere is that of a fractal object where the chosen

length scale is the sphere’s maximum dimensionD or radius R

(cf. Heymsfield et al. 2002a,b). This interpretation, for in-

stance, is described in Blumenfeld and Mandelbrot (1997)

where the fractal object is envisioned to be enclosed by a

sphere with the same maximum dimension as that of the object
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itself. The fractal dimension bms
then describes how the par-

ticle mass scales according to D or R assuming that the fractal

object is self-similar at various scales, 0, r# R. These dual

views of aggregates as either fractals or reduced-density

spheres are used interchangeably throughout this study

with these perspectives in mind where the subscript s rep-

resents ‘‘sphere.’’ The concept of reduced-density ellip-

soids, as denoted by the subscript e, therefore extends

current approaches by taking the reduced-density sphere

parameterizations for aggregate mass and projected area

and simply introduces additional aspect ratio terms as

correction factors.

For general triaxial ellipsoid shapes, both NRe and Aproj

must be reformulated because shape and orientation implicitly

alter these parameters. To calculate Aproj, the ellipsoid is first

aligned with its two semiminor axes, b and c, along the x–y

plane (Fig. 1c) where a, b, and c are initially along the z, y, and

x axes, respectively. Then, three Euler angles: u, u, and c

are used to specify any particular orientation according

to the Z–Y–Z Euler angle rotation convention (Fig. 1a). These

rotations permit a simple expression for the projected area of

an ellipsoid (cf. Vickers 1996):

A
proj

5p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2b2 cos2c sin2u1 a2c2 sin2c sin2u1b2c2 cos2u

q

5pa2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

ba cos
2c sin2u1u2

ca sin
2c sin2u1u2

bau
2
ca cos

2u

q
5pa2C

proj
, (6)

where a $ b $ c. Notice that only the last two Euler angles

u and c change the projected area whereas the first rotation

u changes the angle of the projected ellipse maximum di-

mension from the x axis. The minimum value ofCproj is ubauca

(u 5 08 and c 5 c; as shown in Fig. 1c) whereas the maximum

FIG. 1. Geometry for projecting ellipsoid area and area ratios. (a) General Euler angle rotation convention

followingZ–Y–Z rotations. (b) Top-down x–y plane projection for the general case of projected particle areaApart

(gray area), projected circle Acirc, (blue circle), and projected ellipse area Aproj (green ellipse). Area ratios are

defined by the ratio of Apart to each projected areas as shown. Notice that Acirc is defined in terms of the particle

maximum dimension D rather than the projected maximum dimension. (c) Minimum Aproj 5 pbc 5 pa2ubauca

case. (d) Maximum Aproj 5 pab 5 pa2uba case. Aggregate image in all four panels adapted from Fig. 12 in

Westbrook et al. (2008).
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value is uba (u5 908 and c5 08; as shown in Fig. 1d). It is often

thought that Cproj ’ uba (e.g., Magono and Nakamura 1965;

Szyrmer and Zawadzki 2010), yet the correct distribution of

orientations is still largely uncertain. The projected area geo-

metric factor Cproj can be approximated as power-law combi-

nations of uba and uca:

C
proj

’ hC
proj

i’u
Cba

ba u
Cca
ca , (7)

where Cba and Cca are exponents that represent the contri-

bution of each ellipsoid aspect ratio toward the average pro-

jection for an assumed orientation distribution and brackets

represent an orientation average. A power-law fit for random

orientations is given byCba5 0.9 andCca5 0.5. Figure 2 shows

that the absolute error between the power-law approximation

and a Monte Carlo estimate of the actual average quantity

for hCproji is very close to zero right where the MASC bivariate

beta distribution reaches a peak. Throughout this paper,

Aproj ’ hAproji so that Eq. (7) can be used with Eq. (4) to in-

corporate the effects of random and horizontal orientations

into fall speed and self-aggregation calculations.

Calculating NRe for triaxial ellipsoids is based on the ana-

lytical power-law approach of Khvorostyanov and Curry

(2005), where

N
Re

5 a
m
Xbm , (8)

and the coefficients am and bm are determined using the

method of Khvorostyanov and Curry (2002), Mitchell and

Heymsfield (2005), Khvorostyanov and Curry (2005), and

Heymsfield and Westbrook (2010) for the number-weighted

mean Best number X . The use of a number-weighted Best

number to diagnose am and bm is somewhat arbitrary; other

bulk weightings (e.g., mass or area) of X could also be used

since the ratio of mass to projected area is the critical param-

eter that determines the overall behavior of the Best number.

Despite these more involved bulk weightings, the tests in this

study instead use the number-weighted Best number so as to be

consistent with a newer microphysics scheme: the Ice-Spheroids

Habit Model with Aspect-Ratio Evolution (ISHMAEL; Jensen

et al. 2017). This average Best number approximation can then

be used to develop a general form for all drag parameterization

schemes:

b
m
5

C
1

ffiffiffiffiffi
X

p

2
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11C

1
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pq
2 1
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11C
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, (9a)
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11C

1

ffiffiffiffiffi
X

pq
2 1

� �2

2 a
o
Xbo

Xbm
, (9b)

where C2 5 d20/4 and C1 5 (CoC2)
21/2. For the approach of

Mitchell and Heymsfield (2005), ao 5 1.7 3 1023 and bo 5 0.8

represents a turbulence correction whereas ao 5 bo 5 0 for all

other approaches. For Heymsfield and Westbrook (2010),

Co5 0.35 and d05 0.8 whereas all other schemes haveCo5 0.6

and d0 5 5.83; Dt and ct are turbulence correction terms for

the approach of Khvorostyanov and Curry (2005) that can be

found in their paper. For all other methods, Dt 5 0 and ct 5 1.

Figure 3 shows how these different parameterization schemes

influence the resulting fall speed parameters for assumed

reduced-density sphere/fractal aggregates. The majority of the

differences between these various schemes occurs at larger

sizes where turbulence is expected to increase drag. These

drag parameterization schemes are used in section 3 to thor-

oughly test the sensitivity of the proposed ellipsoid method-

ology compared to the traditional sphere (fractal) approach of

previous studies.

The Best number can be represented in a general form

(cf. Böhm 1989; Heymsfield and Westbrook 2010):

X5
8mgr

a

ph2
a

A
r
j2kc
ellip

5
8mgr

a

ph2
a

A
r
j2kc
sph u

kcCba

ba u
kcCca
ca , (10)

where Arjellip is the ellipse area ratio representing the projected

particle area,Apart, to the ellipsoid projected area,Aproj andArjsph
is the analogous area ratio quantity for spheres1 (see Fig. 1b).

Notice that the form of Eq. (10) is the same as the semiempirical

relationship inferred by Heymsfield and Westbrook (2010) but

FIG. 2. (filled) Absolute error in hCproji between power-law

parameterization (fit) where Cba 5 0.9 and Cca 5 0.5 and the

Monte Carlo estimate (actual). Black contours show the bivariate

beta probability distribution function [Eq. (2)] given in incre-

ments of 2.

1 Often derived from in situ observations in terms of the maxi-

mum projected spanL rather than themaximum particle dimension

D with the assumption that L ’ D. This provides an obvious in-

consistency in Fig. 1b, where Acirc 6¼ (p/4)L2. For simplicity, this

inconsistency is ignored in Fig. 1 in order to maintain the mathe-

matical relationship between Arjellip and Arjsph based on the size

and shape of the aggregate itself rather than its projection.
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with Arjellip instead of Arjsph where kc 5 1 for the approaches

of Mitchell (1996), Mitchell and Heymsfield (2005), and

Khvorostyanov and Curry (2005), kc 5 0.5 for the approach

of Heymsfield and Westbrook (2010), and kc 5 0.25 for the

oblate spheroid approach of Böhm (1989, 1992). For the

current paper, it is not clear which of these exponents would

be most appropriate. Therefore, this study uses kc 5 1.0 for

the approaches of Mitchell (1996), Mitchell and Heymsfield

(2005), and Khvorostyanov and Curry (2005) and kc 5 0.5 for

the approach of Heymsfield and Westbrook (2010). The ap-

proximation of Böhm (1989, 1992) where kc 5 0.25 is not

appropriate for assumed triaxial ellipsoids because the vast

majority of these ellipsoids are not oblate (see Jiang et al.

2019; Dunnavan et al. 2019).

The area ratio can be determined by combining Eq. (6)

and the Apart parameterization provided in Table 1 of

Mitchell (1996):

A
part

5sD§

5 2§sa§ , (11)

where this study uses the parameterization fromMitchell (1996)

where s 5 0.2285 and § 5 1.88 (cgs units). Other parameteri-

zations exist for the projected particle area for aggregates (cf.

Heymsfield and Miloshevich 2003). However, as pointed out by

Heymsfield and Miloshevich (2003), these different parameter-

izations are rather close in value to ones from Mitchell (1996).

Therefore, the tests in this study use only this set of values.

Dividing Eq. (11) by Eq. (6) gives the ellipse area ratio

FIG. 3. Comparison of aggregate fall speed properties following Mitchell [1996 (M96); solid], Khvorostyanov

and Curry [2002 (KC02); solid], Mitchell and Heymsfield [2005 (MH05); dashed], Heymsfield and Westbrook

[2010 (HW10); dotted], and Khvorostyanov and Curry [2005 (KC05); dash–dotted]. Subplots show (a) X vs

Re, (b) X vs bm, (c) X vs am, (d) D vs yt, (e) D vs bys
, and (f) D vs ays . D represents the maximum

aggregate dimension whereas ays and bys
are the spherical/fractal aggregate yt–D power-law prefactor and

exponent, respectively.
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where Arjsph 5 Apart/(pa
2) (see Fig. 1b).

Figure 4 shows the area ratio distributions that result from

the above parameterization method for different values of L.
The Arjsph distribution becomes more sharply peaked and has

its mode shifted to smaller values for smaller L. The additional
aspect ratio factors in the formulation of Arjellip act to spread

out the Arjsph distribution to larger area ratios. Horizontally

and randomly oriented ellipsoids both have nonzero proba-

bility for Arjellip . 1.0. This is the result of using the above

inverse procedure to specify area ratio whereby ellipsoid

shapes and orientations necessarily increase area ratios. It is

important to note that these large area ratio values can be con-

sidered unphysical according to the interpretation of Böhm
(1989). This issue with unphysical area ratio values becomes

more pronounced when ellipsoids are randomly oriented be-

cause horizontal orientations maximize Aproj. These unphysical

values result from using the in situ derived parameters of Mitchell

(1996) which are strictly appropriate only for a truncated range of

projected maximum dimensions that are consistent within probe

limits.Using this same truncated range for ellipsoid projected areas

results in a more realistic distribution, at least for horizontally

oriented ellipsoids. Throughout this study, the full area ratio dis-

tributions will be used when characterizing fall speed. Although

the unrealistic area ratio values provide a limitation for this study,

the use of these area ratios will provide a set of sensitivity tests for

shape and orientation in the resulting calculations.

The effective aggregate sphere density is assumed to follow

the empirical hybrid parameterization given by Table 1 of

Heymsfield et al. (2002a):

r
s
(a)5 2akAn

r jsphaa

5a
rs
a
brs , (13)

where k, n, and a are parameters developed from in situ da-

tasets such as Heymsfield et al. (2002a) and ars and brs
are

given in the appendix. In this study, n5 1.5 which is consistent

with all parameterizations. Additionally, three sets of k and

a are used to test the sensitivity of fall speed and self-aggregation

to various M–D exponents of spherical aggregates (bms
). These

values are from Heymsfield et al. (2002a) where k 5 0.015 and

a 5 21 (bms
’ 1:8) and from Heymsfield et al. (2002b) where

k5 0.054 and a520.8 (bms
’ 2:0), and k5 0.078 and a520.6

(bms
’ 2:2). All values are given in terms of cgs units. With this

parameterization, the aggregate mass for spheres can be ex-

pressed as

m5a
ms
a
bms . (14)

Values of ams
range from 0.000 544 to 0.004 03 g cm2bms

which yield mean aggregate mass values m5qi/Ni that range

from 3.85 3 1025 to 13.6mg for L 5 100 cm21 to L 5 2 cm21,

respectively. This hybrid approach therefore corresponds to a

wide variety of rimed and unrimed aggregates (cf. Locatelli

and Hobbs 1974; Kajikawa and Heymsfield 1989; Mitchell

1996; Heymsfield et al. 2002a,b; Field and Heymsfield 2003;

Schmitt and Heymsfield 2010) and are not necessarily repre-

sentative of any particular type. The mass of an ellipsoidal

aggregate is given as

m5
4

3
pr

e
a3u

ba
u

ca
. (15)

The variable re here refers to the effective ellipsoid density

of the aggregates. If ellipsoidal aggregates exhibit the same

spherical effective density as Eq. (13), then

FIG. 4. Probability distributions of Arjsph and Arjellip for (left) L 5 100 cm21, (center) L 5 10 cm21, and (right) L 5 2.0 cm21. Shaded

histograms represents the distributions computed by sampling from each discretized distribution whereas solid lines correspond to the

distributions computed from the analytical H-function representation given in the supplementary materials section. Staircases for the

ellipsoid computations correspond to distributions with maximum dimensions that are in between the cloud probe limits used by

Heymsfield et al. (2002a). Ellipsoid distributions represent area ratios for horizontally oriented (blue) and randomly oriented aggregates

(purple) with power-law parameterizations given in the text.
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This implies that using the typical constraint of a spherical

effective density negates the influence of aspect ratio disper-

sion on mass. In this case, the mass distribution is the same for

ellipsoids as for spheres. Tests using this assumption can

therefore be thought of as a microphysical model constraint in

absence of an assumed ellipsoid effective density parameteri-

zation. Alternatively, ellipsoidal aggregates can also exhibit a

similar power-law like relation with size such that

m5
4

3
pa

re
a
31breu

ba
u
ca

5a
m
abmu

ba
u

ca
, (17)

where are and bre
are effective ellipsoid density parameters.

For consistency, both assumptions are used in the sensitivity

tests presented in section 3. Tests with the same M–D relation-

ships between typical power-law relations and for ellipsoidal

particles use Eq. (16). This assumption would be consistent for

bulk microphysics models where bulk quantities like IWC or

reflectivity are predicted. Tests using Eq. (17) on the other hand

maintain a shape-inducedmass dispersion. Unfortunately, there

are not many datasets of projected ellipse area ratios that could

be used to infer the parameters in re. In addition, the 3D

asymmetry of triaxial ellipsoids makes such a parameteriza-

tion rather involved if projected aspect ratios are used to in-

form re. Instead, this study fixes the first twomass moments of

both the spherical and ellipsoid distributions so as to diagnose

are and bre
. Such a constraint is especially useful because

observational estimates of both IWC and reflectivity are as-

sumed proportional to the first and second mass distribution

moments of the particle distribution function. Therefore,

using the same two moments between the spherical and el-

lipsoidal cases necessarily constrains both cases as identical

from an observational standpoint.

The Best number can now be expressed using Eqs. (10),

(12), and (15):

X5a
X
abXu

xba
ba u

xca
ca , (18)

where xba5 kcCba and xca5 kcCca if Eq. (14) is used and xba5
kcCba1 1 and xca5 kcCca1 1 if Eq. (15) is used. aX and bX are

the Best number power-law parameters given in the appendix.

Combining Eqs. (5), (12), (15), and (18) yields

y
t
5

1

2

h
a

r
a

a
m
a
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X abXbm21u

xbabm2cba /2

ba u
xcabm2cca /2
ca
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ba u

yca
ca . (19)

c. Self-aggregation

The equations for mass, projected area, and fall speed given

in the previous section can be used to calculate aggregation

self-aggregation rates. The governing equation for collection

(aggregation) is called the stochastic collection equation

(SCE) which is given by

›n(x, t)

dt
5

1

2

ðx
y50

K(x2 y, y)n(x2 y, t)n(y, t) dy

2

ð‘
y50

K(x, y)n(x, t)n(y, t) dy, (20)

where x and y aremasses of two aggregating particles,K(x, y) is

the collection kernel which describes the physics of the ag-

gregation process, and n(x, t) is the number distribution func-

tion for all particles at time t. It is common to write Eq. (20) in

terms of distribution moments by integrating both sides of

Eq. (20) [i.e.,
Ð ‘
x50

xrf (x, t) dx]. A transformation of this new

equation (see Bleck 1970) gives

dM
r

dt
5
1

2

ð‘
x50

ð‘
y50

[(x1 y)r 2 xr 2 yr]K(x, y)n(x, t)n(y, t) dx dy,

(21)

where Mr denotes the value of the rth moment of the number

distribution function (for more details, see Thompson 1968).

Throughout this study, the number distribution function is

represented in terms of mass such that the zeroth, first, and

second moments can be considered proportional to total

number, mass, and reflectivity (assuming Rayleigh scattering),

respectively. By convention, the first moment does not change

(i.e., mass is conserved during aggregation). However, the

zeroth and second moments can be expressed in terms of the

simplified form2

dM
r

dt
5 (21)p11 p1 1

2

ð‘
x50

ð‘
y50

xpyqK(x, y)n(x, t)n(y, t) dx dy,

(22)

when r5 0(p5 q5 0) and r5 2(p5 q5 1). Partial moments

such as the conversion of mass from one category to another

(i.e., Verlinde et al. 1990) can be expressed for r 5 1 when

p 5 1 and q 5 0. For self-aggregation, q 5 p.

Typically, the collection kernel for aggregation K(x, y) is

represented in terms of a hydrodynamic kernel given by (cf.

Connolly et al. 2012)

K(x, y)5E
agg

y
tx
2 y

ty

ffiffiffiffiffiffiffiffiffiffiffiffiffi
A

proj,x

q
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
A

proj,y

q� �2

,

����
���� (23)

where the subscripts x and y represent each collecting species

and Eagg represents the aggregation efficiency. It is often the

case that the fall speed term in Eq. (23) complicates evaluation

of Eq. (22) because of the discontinuity provided by the ab-

solute value function. This has led to the use of either analytical

approximations (Wisner et al. 1972; Seifert et al. 2014) or

computationally expensive general solutions (Passarelli 1978;

2 Note: This form is only appropriate for r 5 0 and r 5 2. Other

integer moments can also simplify by using a binomial coefficient

expansion. See Drake (1972) for details.
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Verlinde et al. 1990) expressed in terms of hypergeometric

functions.

Normally, Eq. (22) is a double integral. However, the use of

the bivariate beta distribution for ellipsoidal shape complicates

the evaluation of this integral by increasing the dimensionality

to six for self-aggregation. It is simple to analytically integrate

Eq. (22) using any of the fall speed difference approximations

for bivariate beta distributed ellipsoid aspect ratios. However,

the use of the full hydrodynamic kernel becomes quite com-

plicated due to the size and shape influence on the integral

limits when splitting the absolute value function into two terms

(cf. Verlinde et al. 1990). Therefore, the self-aggregation

rates in this study are estimated using a Monte Carlo ap-

proach for evaluating Eq. (22) with Eq. (23) where the

gamma and bivariate beta distributions are discretized and

sampled 10 000 times. Each sampled set ofm, yt, andAproj then

is used to estimate the integrated collection kernel for number

and reflectivity. For simplicity,Eagg andNi are both normalized

to unity.

For all tests, 2# L# 100 cm21. This range is consistent with

the observations from Heymsfield et al. (2002a) and Lawson

et al. (1998) although the lower end ofL is almost always closer

to 10 cm21 rather than 2 cm21 (Lo and Passarelli 1982;Mitchell

1988). Many studies (e.g., Heymsfield et al. 2002a) show that

L values of 2 cm21 or below are unlikely. Therefore, the

sensitivity test results in the next section should be viewed as en-

compassing the beginning stages of aggregation (L ; 100 cm21),

late stages of aggregation (L ; 10 cm21), and the rare case of

FIG. 5. Comparison between spheres and a bivariate distribution of ellipsoids when calculating fall speed for different drag

parameterization methods, a values, and L values. Red lines correspond to calculations assuming spheres whereas blue lines

represent calculations using ellipsoids. Line style denotes the chosen fall speed parameterization following Mitchell (1996),

Khvorostyanov and Curry (2002) (solid), Mitchell andHeymsfield (2005) (dashed), Heymsfield andWestbrook (2010) (dotted), and

Khvorostyanov and Curry (2005) (dash–dotted). Notice that the axis limits are different for various panels to highlight changes in

the fall speed distribution.
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extremely large aggregates (L ; 2 cm21; e.g., Lawson et al.

1998). This last case is specifically designed to investigate how

aggregate shapes and orientations are expected to impact the

limiting behavior of the fall speed distribution and self-

aggregation rates in the absence of secondary ice production

processes such as collisional breakup.

3. Results

a. Fall speed

1) AGGREGATE SHAPE EFFECT

Figure 5 compares the fall speed distributions (see supple-

mentary materials) between the traditional power-law ap-

proaches when assuming spheres (fractals) and when assuming

ellipsoids with aspect ratios governed by Eq. (2) for different

slope parameters (L) and bms
[as dictated by the a exponent in

Eq. (13), the area ratio-density parameterization]. For this

series of subplots, both mass and projected area exhibit dis-

persion for the same maximum dimension and aggregates are

assumed to fall such that their projected areas maximize (i.e.,

Cba 5 1.0 and Cca 5 0). For large slope parameters (small

mean maximum dimensions), the introduction of shape dis-

persion does not significantly alter the fall speed distribution.

However, smaller values ofL (i.e.,L5 10 cm21 andL5 2 cm21)

lead to a narrowing of the sphere fall speed distribution

which become more pronounced when the density exponent

a equals21. Importantly, ellipsoids do not narrow regardless of

slope parameter. In fact, aggregate shapes appear to spread out

the fall speed distribution as L decreases. The increased el-

lipsoid fall speed dispersion consequently extends the tail of

the fall speed distribution more than spheres. This extended

tail suggests that bulk quantities which depend upon fall speed,

such as mass-weighted fall speed, are perhaps underestimated

when assuming spherical or fractal aggregates. For very small

values of L 5 2.0 cm21, the fall speed distribution for spheres

FIG. 6. As in Fig. 5, but with ellipsoids that exhibit the same area ratio as spheres.
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becomes very narrow whereas ellipsoids maintain a disperse

fall speed distribution regardless of a(bms
).

Because aggregate shapes impact both mass and projected

area, it is not initially clear which component contributes to

the consistent disperse nature of n(yt) for ellipsoids. To in-

vestigate the underlying cause, Fig. 5 was reproduced with

the exception that the same area ratio or the same mass

distribution was used for both spheres and ellipsoids. When

controlling for area ratio (Fig. 6), the distributions for ellip-

soids appear visually similar to that in Fig. 5. The primary

difference between both figures is that Fig. 6 for ellipsoids has

its mode shifted more toward smaller fall speeds. Besides this

change, both distributions are visually identical. When con-

trolling for mass (Fig. 7), the ellipsoid distribution appears

closer to that of spheres. As in Fig. 6, large values of L for

ellipsoids lead to a fall speed peak at smaller values com-

pared to spheres. However, small values of L in Fig. 7 lead

to a pronounced narrowing of the fall speed distribution for

ellipsoids. Therefore, it is clear that the major contribution of

shape dispersion on fall speed comes from the increased

dispersion of aggregate mass at a particular size rather than a

decrease in projected area.

The effects of aggregate shape on bulk fall speed quantities

(number-, mass-, and reflectivity-weighted fall speeds) can

be seen in Fig. 8 for ellipsoids that exhibit shape-induced

mass and projected area dispersions for the same maximum

dimension. In general, ellipsoids exhibit larger mean fall

speeds than spheres where the difference between spheres

and ellipsoids becomes larger for smaller values of a (larger

values of bm) and for higher-ordered mass fall speed mo-

ments (i.e., mass-weighted and reflectivity-weighted fall

speed). The largest differences between spheres and ellip-

soids also occur at higher values of L and become closer to

one another for smaller values of L. Smaller values of L act

to decrease results using Mitchell and Heymsfield (2005) as

compared to the other drag parameterizations. Much of the

FIG. 7. As in Fig. 5, but with ellipsoids that exhibit the same mass distribution as spheres.
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influence of a on number-weighted fall speed quantities exists

between a 5 21 (bms
’ 1:8) and a 5 20.8 (bms

’ 2:0) for both

spheres and ellipsoids. However, mass- and reflectivity-weighted

fall speed are strongly affected by decreases ina even for various

drag parameterization schemes. As stated before, the extended

tail of the fall speed distribution for ellipsoids leads to their

higher mean fall speed values. Overall, Fig. 8 shows that high

mass and fall speed moments can increase by almost 60% due to

shape and orientation alone.

2) ORIENTATION EFFECTS

Figure 9 compares the horizontally oriented mean ellipsoid

bulk fall speed quantities from Fig. 8 to randomly oriented

ellipsoids. The change in orientation produces about 10%

difference where the largest differences occur at larger L for

all drag parameterization schemes except for Heymsfield

andWestbrook (2010) which has kc 5 0.5. For the other drag

parameterizations, randomly oriented ellipsoids have smaller

mean fall speeds than horizontally oriented ellipsoids. Higher-

order fall speed quantities yield smaller differences between

horizontally and randomly oriented ellipsoids. This can be ex-

plained by howmass impacts the fall speed more than projected

area as illustrated in Figs. 5 and 6. Therefore, orientations

produce a relatively mild effect on fall speed even when

considering the unphysical behavior of the ellipsoidal area

ratio distribution produced by theMitchell (1996) particle area

parameterization.

b. Self-aggregation

1) AGGREGATE SHAPE EFFECT

Figure 10 shows the absolute value of self-aggregation rates

for number and reflectivity for the distributions from Figs. 5

and 8. Self-aggregation rates generally increase as a power-law

with decreasing L where the horizontally oriented ellipsoids

yield smaller self-aggregation rates than spheres of the same

size. This, in general, results from ellipsoids exhibiting a smaller

projected area in Eq. (23) than spheres. Ellipsoids therefore

produce two competing self-aggregation effects. As shown in

Fig. 5, the introduction of ellipsoid shape dispersion for a given

size acts to increase the fall speed distribution standard deviation

which, in turn, increases the fall speed term in Eq. (23). At the

same time, however, the use of ellipsoids acts to decrease the

projected area for aggregates of a particular size which directly

decreases the area term in Eq. (23). Despite the nonlinearities

due to shape and orientation, self-aggregation rates for the

majority of L values are rather similar between spheres and el-

lipsoids where ellipsoids exhibit slightly larger self-aggregation

FIG. 8. Comparison of (top) number-weighted, (middle) mass-weighted, and (bottom) reflectivity-weighted distribution mean fall

speeds as a function of slope parameter L for different values of a. Ellipsoids of the same size exhibit shape-induced dispersion of both

mass and projected area.
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rates for small values of L. An important exception is when the

drag parameterization of Mitchell and Heymsfield (2005) is

employed. For this drag scheme, sphere self-aggregation rates

drop precipitously asL approaches 2 cm21. This sharp transition

occurs because of the rapid narrowing of the fall speed distri-

bution when bys
/ 0 (Fig. 5). As a result, the ratio of ellipsoid to

sphere number and reflectivity self-aggregation explodes to a

factor greater than 100. The value of a affects self-aggregation

rates primarily for small L such that ellipsoids yield smaller self-

aggregation rates than spheres when a5 20.6 but greater rates

for ellipsoids when a 5 21. Greater values of a(bm) therefore

yield consistently smaller self-aggregation rates than spheres

where the ratio is approximately 0.6 for number.

The same fall speed sensitivity tests were also conducted for

self-aggregation. This can be seen in Figs. 11 and 12 which

represent a comparison of rates between ellipsoidal and sphere

aggregates with the same area ratio and the same mass distri-

bution, respectively. Like Fig. 6, ellipsoids with the same area

ratio as spheres yield results that are visually similar to ellip-

soids where mass and area ratio are disperse for aggregates of

the same size (Fig. 5). The main differences between Figs. 10

and 11 occur with large values ofLwhere the dispersion in area

ratio in Fig. 10 acts to decrease self-aggregation rates com-

pared to Fig. 11. This can be explained by the increased area

term in Eq. (23) due to constraining the area distribution to be

the same as spheres. The impact of mass dispersion therefore

primarily affects self-aggregation rates for smaller values of L.
Increasing a(bm) mitigates this difference between ellipsoids

and spheres. Overall, Fig. 11 shows very little if any difference

in self-aggregation rates for both number and reflectivity ex-

cept for very small values ofL for the drag parameterization of

Mitchell and Heymsfield (2005) and when a 5 21. Ellipsoids

with the same mass distribution as spheres (Fig. 12) show

similar differences for number as Fig. 10. The main difference

between Figs. 10 and 12 is that Fig. 12 shows little variation of

the difference in self-aggregation rates between ellipsoids and

spheres whereas this difference monotonically increases in

Fig. 10. Comparing all three figures suggests that the area term

dominates at large values of L whereas the fall speed term

dominates for small L values.

2) AGGREGATE ORIENTATION EFFECT

Figure 13 shows sensitivity tests for the self-aggregation

rates when assuming horizontally oriented ellipsoids from

Fig. 12 and randomly oriented ellipsoids when using the

power-law parameterization from Fig. 2. The use of this

parameterization for randomly oriented ellipsoids further de-

creases the projected area of ellipsoids by about 45% com-

pared to horizontal orientations. The difference between these

two tests can be explained by the projected area term in the

collection kernel which is weighted by Cproj. The fall speed

term, as shown in Figs. 5–7, is primarily affected by particle

mass which does not depend upon orientation. Therefore, the

self-aggregation rates decrease based on factors that corre-

spond to projected ellipse area: Cproj ’ 0.6 for horizontally

oriented aggregates and Cproj ’ 0.4 for randomly oriented

aggregates. The ability to expand the area term in the self-

aggregation equations suggests that there are little to no

nonlinear effects associated with orientation and self-

aggregation rates.

4. An analytical correction parameterization for
microphysics models

This section derives corrections to sedimentation and ag-

gregation calculations that incorporate the effects of aggregate

shapes while maintaining conventional power-law methodology.

This allows for any microphysics model that prescribes assumed

FIG. 9. As in Fig. 8, but for the ratio of bulk fall speeds between horizontally oriented and randomly oriented aggregates. Various colors

reflect different bulk fall speed quantities: number-, mass-, and reflectivity-weighted fall speed for a given a and drag parameterization

scheme.
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M–D and yt–D relationships to exhibit a spread of masses and

fall speeds while conserving mass. IWC consistency between

the traditional (spherical/fractal) and the new (ellipsoidal)

parameterizations is important because some in situ derived

M–D relationships use IWC to constrain the parameteriza-

tions; using such relationships for a dispersion of aggregate

shapes must necessarily yield the same IWC as that used for

the relation. Here, the first two mass moments are constrained

to be identical like in the previous sections. This allows for a

single, nonlinear equation that relates the M–D sphere/fractal

exponent bms
to the ellipsoidalM–D exponent bm. This means

that only bms
is necessary to find the corresponding bm for an

assumed bivariate ellipsoid distribution. For the ellipsoid dis-

tribution used in this paper and for horizontal orientations (i.e.,

Cba5 1.0 andCca5 0), the resulting bm is almost exactly linear

from 1:4#bms
# 2:6 (R2 5 1). This equation is given by

b
m
5 1:016b

ms
2 0:1955: (24)

A new prefactor can be derived by using Eq. (24) in the

equation for mass mixing ratio qi and a new characteristic

semimajor dimension an can be derived by assuming a volume-

weighted ellipsoidal density re. The primary difference be-

tween Eq. (24) and that used in the results section is that the

results section numerically solved for bm whereas Eq. (24)

provides an accurate and convenient linear fit.

Now, the new bm can be used to find the corresponding

power-law relationship for fall speed for an assumed bys
. As

an example, the general assumption made by Mitchell (1996)

and Mitchell and Heymsfield (2005) that kc 5 1.0 is assumed

although kc5 0.5 as used byHeymsfield andWestbrook (2010)

could also be used. It is common for microphysics models

to use M–D and yt–D developed from different datasets.

Therefore, to maintain generality, new fall speed relations are

solved assuming that

y
ts
5a

ys
a
bys 5 hy

t
iuba ,uca

5a
y
aby u

yba
ba u

yca
ca

� 	
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y
aby u

2bm21/2
ba u
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D E
.

(25)

by can be solved by assuming bm 5bms
’ bme

and bAR 5
bARs

’bARe
so that

FIG. 10. Magnitude comparison of self-aggregation rates for (a)–(c) number and (d)–(f) reflectivity for spheres (red lines) and ellipsoids

(blue lines) following Mitchell (1996) (solid) or Mitchell and Heymsfield (2005) (dashed) according to various L parameter values. Units

are in cgs and ellipsoids are assumed to fall horizontally such that Cba 5 1.0 and Cca 5 0. (g)–(i) The ratio of self-aggregation rates

(ellipsoids/spheres) for number (black) and reflectivity (gray). Calculations were performed by sampling each probability distribution

10 000 times. Ellipsoids of a particular size exhibit dispersion in both mass and projected area.
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Finally, ay can be solved by putting by in Eq. (25) and

specifying a reference size,Dref, based on the size interval used

to derive the yt–D relation. Equations (24)–(26) allow for the

transformation of ay and by without the need for any explicit

drag parameterization scheme. A summary of all these con-

versions is given in Table 1 as well as relevant bulk quantities

and closed-form expressions for aggregate self-aggregation

rates using the variance fall speed approximation from Seifert

et al. (2014). Notice that the extra gamma functions in Table 1

can generally be evaluated as time-independent constants for an

assumed set of bivariate beta distribution parameters, aba, bba,

and bcb. Other bivariate distribution parameter sets would

modify Eqs. (24)–(26).

An example of this procedure is shown in Fig. 14 where the

fall speed relation from Fig. 1 in Zawadzki et al. (2010) is used

to specify yts. As shown in Fig. 1b from Zawadzki et al. (2010)

and Fig. 3 from Brandes et al. (2008), the standard deviation of

fall speeds for all sizes is approximately s5 0.2m s21. The new

rescaled relation introduces approximately s 5 60.13m s21

about the mean based on the dispersion of aggregate shapes

alone. This suggests that a dispersion of aggregate densities is

necessary to capture the full range of fall speed variation.

Interestingly enough, this estimate of s happens to be quite

close to older estimates provided by Sasyo and Matsuo

(1980), who found that s ’ 0.12m s21 regardless of mass.

Normally, the shape-induced spread of fall speed has

been ignored in the calculations for in situ observations.

This has led to claims about a supposed lack of significant

mass flux fall speed dispersion which, in turn, has histori-

cally served as the justification for Lagrangian spiral in situ

cloud probe sampling of snow. This sampling technique

assumes that the snow mass flux is contained within a nar-

row range of fall speeds, thus permitting a direct compari-

son of observed measurements from a slowly descending

aircraft to a presumed population of steadily falling snow-

flakes. The justification for this approach appears to have

stemmed from the theoretical analysis of Lo and Passarelli

(1982), who provided an equation [their Eq. (4)] that de-

scribes the relative mass flux fall speed standard deviation

(sm) for various values of bys
. For bys

5 0:3 [an assumption

Lo and Passarelli (1982) use based on observational esti-

mates at that time], their equation yields approximately

sm 5 0.15 m s21. However, there are at least three major

FIG. 11. As in Fig. 10, but with the same area ratio distribution between ellipsoids and spheres.
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limitations of this equation. First, Lo and Passarelli (1982)

assumes aggregates are homogeneous spheres with masses

and fall speeds that are given in terms of melted diameters.

Having such a large bms
skews their calculation of mass flux

dispersion because higher values of bms
artificially weights

mass flux to larger sizes. This is consistent with the results

from Fig. 8 which shows that bulk fall speed quantities are

significantly affected by bm for both spheres and ellipsoids.

More accurate estimates of bms
’ 2:0 will therefore allow for

the fall speed dispersion to produce a more profound effect

on the mass flux dispersion. Second, their equation neces-

sarily ignores the fall speed andmass dispersion for particles

of the same size. In contrast, the equations provided in this

work introduce an additional set of gamma functions in

Eq. (4) from Lo and Passarelli (1982) that they do not in-

clude. Without these additional factors, Eq. (4) in Lo and

Passarelli (1982) represents an underestimate of the true

mass flux dispersion even if theM–D and yt–D relationships

are accurate. Finally, more recent estimates of bys
(e.g.,

Zawadzki et al. 2010) seem to suggest that bys
is lower in

value than what Lo and Passarelli (1982) had originally as-

sumed. The traditional power-law framework suggests that

the fall speed distribution should narrow for smaller values

of bys
even though the variation of aggregate shapes negates

this narrowing as demonstrated in Figs. 5 and 6. The ques-

tion then becomes, How much does the mass flux fall speed

dispersion change when using the above shape parameteri-

zation correction?

Figure 15 shows a comparison of sm using Eq. (4) from Lo

and Passarelli (1982) and using the analytical correction

parameterization from Eqs. (24)–(26). bms
is varied for

reasonable values of bms
as well as for bms

5 3:0 as assumed

by Lo and Passarelli (1982). Ellipsoidal aggregates univer-

sally produce larger mass flux fall speed dispersion for the

same bms
and bys

values. The difference between the ellip-

soid and sphere mass flux dispersion increases dramatically

as bys
decreases. For the assumed value of bys

5 0:3 used by

Lo and Passarelli (1982), the introduction of ellipsoidal

shapes increases the mass flux fall speed dispersion by ap-

proximately 25% from sm ’ 0.15 m s21 to sm ’ 0.19 m s21.

Decreasing bms
further exacerbates this discrepancy to more

than 50% of that estimated by Lo and Passarelli (1982)

where sm is between approximately 0.25 and 0.28 m s21. Lo

and Passarelli (1982) provided an example calculation

where the mean mass flux fall speed equals 1.05 m s21. In this

case, their estimate of sm’ 0.15 m s21 would yield a range of

mass flux fall speeds between 0.74 and 1.37 m s21 (62sm)

which they claimed contained the vast majority of mass flux.

FIG. 12. As in Fig. 10, but with the same mass distribution between ellipsoids and spheres.
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However, the estimate of the present work suggests that sm

would be at least 0.25 m s21 for bys
5 0:3. Therefore, the full

range of mass flux fall speeds (as estimated by 62sm) would

span approximately 1.0 m s21. As a result, the variation of

fall speeds responsible for the mass flux would approxi-

mately equal the mean mass flux fall speed itself. Moreover,

the mass flux dispersion difference between ellipsoids and

spheres increases dramatically as bys
decreases. For bys

’ 0:15,

as observe by Zawadzki et al. (2010), ellipsoids yield sm that

is more than 100% larger than that predicted by Lo and

Passarelli (1982).

5. Conclusions

Some authors (e.g., Zawadzki et al. 2010; Szyrmer and

Zawadzki 2010) have emphasized that fall speed should be

parameterized according to a measure of size that decreases

the observed spread. However, this study suggests that future

efforts should embrace rather than skirt the inherent fall

speed variability. Ignoring this variability leads to incorrect

estimates of sedimentation and aggregation where the fall

speed distribution unphysically narrows for larger sizes (smaller

slope parameters) which would further influence the subsequent

growth of the aggregates themselves. As a result, the conven-

tional power-law framework has obfuscated the physical un-

derstanding of fall speed dispersion. For instance, much of

what is known about aggregates and their evolution has re-

sulted from studies that attempt to observe a population of

these particles as they fall. However, incorporation of shape

dispersion increases the mean relative mass flux fall speed

dispersion bymore than 100%. The result of this increase in fall

speed dispersion suggests that the mass flux contribution from

each particle is not restricted to a narrow range of fall speeds

as stated by Lo and Passarelli (1982). The increase in relative

fall speed distribution dispersion from ellipsoids also negates

the hypothesized distribution narrowing proposed by Mitchell

and Heymsfield (2005). This suggests that self-aggregation

rates remain large and even increase with decreasing values

of L. As a result, other ice mechanisms such as collisional

breakup or rime splintering must take place in order to prevent

L from continuously decreasing.

Nonlinearities among microphysical parameters complicate

the use of static M–D and yt–D relationships because these

relationships are derived without consideration of shape and

FIG. 13. As in Fig. 12, but with horizontally oriented ellipsoidal aggregates (blue) and randomly oriented ellipsoidal aggregates (purple).

(g)–(i) Horizontally oriented ellipsoids over randomly oriented ellipsoids. Only Mitchell (1996) (solid) and Mitchell and Heymsfield

(2005) (dashed) drag parameters are shown.

JANUARY 2021 DUNNAVAN 67

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/10/21 12:44 PM UTC



T
A
B
L
E
1
.R

e
la
ti
o
n
s
b
e
tw

ee
n
o
ri
g
in
a
l(
sp
h
e
ri
ca
l/
fr
ac
ta
la
g
g
re
g
a
te
)
p
a
ra
m
e
te
rs
a
n
d
m
o
m
en

ts
a
n
d
n
e
w
(b
iv
a
ri
a
te

e
ll
ip
so
id
a
l)
p
a
ra
m
e
te
rs
a
n
d
m
o
m
en

ts
fo
r
st
a
ti
c
M
–
D

a
n
d
y t
–
D

re
la
ti
o
n
sh
ip
s

w
h
e
re

k
c
5

1
.0
,
C

b
a
5

1
.0
,
a
n
d
C

c
a
5

0
(h
o
ri
zo
n
ta
l
o
ri
e
n
ta
ti
o
n
s)
.

P
a
ra
m
e
te
r

O
ri
g
in
a
l
(s
p
h
e
re
s/
fr
a
ct
a
ls
)

N
e
w

(E
ll
ip
so
id
s)

a
b
a

—
6
.9
7
9
3

b
b
a

—
4
.3
5
0
2

b
c
b

—
5
.3
4
3
7

b
A
R

2
0
.1
2

2
0
.1
2

b
m

b
m

s
1
:0
1
6
b
m

s
2
0
:1
9
5
5

a
m

a
m

s
q
i

N
i

a
2
b
m

n

G
(n
)

G
(n

1
b
m
)

(a
b
a
1
b
b
a
1
1
)(
a
b
a
1
b
b
a
1
b
cb
)

a
b
a
(a

b
a
1
1
)

a
n

" q
i

a
m

s
N

i

G
(n
)

G
(n

1
b
m

s
)# 1/b

m
s

q
i

4 3
N

ip
r
e

G
(n
)

G
(n

1
b
m
)

(a
b
a
1

b
b
a
1

1
)(
a
b
a
1

b
b
a
1

b
cb
)

a
b
a
(a

b
a
1

1
)

2 6 6 4
3 7 7 51

/b
m

b
m

b
y s
1

1

b
m

s
2
b
A
R

b
y s
1

1

b
m

s
2
b
A
R

b
y

b
y s

(b
m
2

b
A
R
)b

m
2
1

a
y

a
y s

a
y s
a
b
y s
2
b
y

re
f

G
(a

b
a
)G

(a
b
a
1
b
b
a
1
b
cb
1

y c
a
)G

(a
b
a
1

b
b
a
1

y b
a
1
y c

a
)

G
(a

b
a
1
b
b
a
1
b
cb
)G
(a

b
a
1

b
b
a
1
y c

a
)G
(a

b
a
1

y b
a
1
y c

a
)

y b
a

—
2
b
m
2
1 2

y c
a

—
b
m

A
(a

n
)

p
a
2 n

p
a
2 n

m
(a

n
)

a
m

s
a
b
m
s

n
a
m
a
b
m

n

y t
(a

n
)

a
y s
a
b
y s

n
a
y
a
b
y

n

D
y t

x
y

y t
(a

n
)

G
(n

1
2
)

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
�2

k
5
0

� 2 k

� (2
1
)k
G
[n

1
2
1
(2

2
k
)b

y s
]G
(n

1
2
1

k
b
y s
)

s
y t
(a

n
)

G
(n

1
2
)

a
b
a

a
b
a
1
b
b
a

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffi
�2

k
5
0� 2 k

� (2
1
)k
G
[n

1
2
1

(2
2
k
)b

y
]G
(n

1
2
1

k
b
y
)hu

(2
2
k
)y

b
a

b
a

u
(2
2
k
)y

ca
ca

ihu
k
y b

a

b
a
u
k
y c

a
ca

i
s

D
y t

z
x
y

y t
(a

n
)

G
(n

1
2
1
b
m

s
)

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffi
�2

k
5
0

� 2 k

� (2
1
)k
G
[n

1
2
1

b
m

s
1

(2
2

k
)b

y s
]G
(n

1
2
1
b
m

s
1
k
b
y s
)

s
y t
(a

n
)

G
(n

1
b
m
1

2
)

a
b
a
(a

b
a
1
1
)(
a
b
a
1
2
)

(a
b
a
1
b
b
a
1
1
)(
a
b
a
1
b
b
a
1
2
)(
a
b
a
1
b
b
a
1
b
cb
)

3

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffi
�2

k
5
0

� 2 k

� (2
1
)k
G
[n

1
2
1

b
m
1

(2
2
k
)b

y
]G
(n

1
2
1

b
m
1

k
b
y
)hu

1
1
(2
2
k
)y

b
a

b
a

u
1
1
(2
2
k
)y

ca
ca

ihu
1
1
k
y b

a

b
a

u
1
1
k
y c

a
ca

i
s

M
o
m
e
n
ts
/b
u
lk

q
u
a
n
ti
ti
e
s

O
ri
g
in
a
l
(s
p
h
e
re
s/
fr
a
ct
a
ls
)

N
e
w

(e
ll
ip
so
id
s)

N
u
m
b
e
r
m
ix
in
g
ra
ti
o

N
i

N
i

IW
C

N
i

r
a

m
(a

n
)
G
(n

1
b
m

s
)

G
(n
)

N
i

r
a

m
(a

n
)
G
(n

1
b
m
)

G
(n
)

a
b
a
(a

b
a
1

1
)

(a
b
a
1

b
b
a
1

1
)(
a
b
a
1

b
b
a
1

b
cb
)

N
u
m
b
e
r-
w
e
ig
h
te
d
fa
ll
sp
e
e
d

y t
(a

n
)
G
(n

1
b
y s
)

G
(n
)

y t
(a

n
)
G
(n

1
b
y
)

G
(n
)

G
(a

b
a
1
b
b
a
1
b
cb
)G
(a

b
a
1
b
b
a
1
y c

a
)G
(a

b
a
1

y b
a
1

y c
a
)

G
(a

b
a
)G

(a
b
a
1
b
b
a
1
b
cb
1
y c

a
)G
(a

b
a
1

b
b
a
1

y b
a
1

y c
a
)

S
n
o
w

p
re
ci
p
it
a
ti
o
n
ra
te

N
i

r
a

m
(a

n
)y

t(
a
n
)
G
(n

1
b
m

s
1

b
y s
)

G
(n
)

N
i

r
a

m
(a

n
)y

t(
a
n
)
G
(n

1
b
m
1

b
y
)

G
(n
)

G
(a

b
a
1

b
b
a
1

b
cb
)G

(a
b
a
1
b
b
a
1

y c
a
1
1
)G

(a
b
a
1
y b

a
1

y c
a
1
2
)

G
(a

b
a
)G
(a

b
a
1

b
b
a
1

b
cb
1
y c

a
1
1
)G

(a
b
a
1

b
b
a
1
y b

a
1

y c
a
1
2
)

68 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 78

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/10/21 12:44 PM UTC



density variation for a particular size. The bivariate beta pa-

rameters observed by Dunnavan et al. (2019) and used in this

study suggest that hubaucai ’ 0.27 and hu2
bau

2
cai’ 0:08. These

additional factors impact IWC and reflectivity, respectively.

Often M–D relationships can implicitly include this factor

when using observations to estimate the prefactor, am.

However, ignoring this factor could therefore alter calcula-

tions of the second mass moment (reflectivity) when analyti-

cally integrating PSDs. Many microphysics models predict the

secondmass moment when comparingNWPmodels with radar

observations or will use this moment to analytically estimate L
(e.g., Passarelli 1978; Mitchell 1988; Mitchell et al. 2006).

Traditional M–D relations do not explicitly constrain the

second mass moment. Therefore, it is not clear what would

happen to self-aggregation rates for a known appropriate

secondmass moment. Constraining the first twomass moments

between ellipsoids and spheres clearly leads to a cancellation of

effects between fall speed and projected area such that the self-

aggregation rates are lower than that of spheres for large L
(where ellipsoidal projected area is smaller than spheres) but

increases to become larger than spheres for small L (where fall

speed dispersion becomes much larger than spheres). Other re
parameterizations could in theory yield more significant dif-

ferences in fall speed quantities and self-aggregation rates.

The current study illustrates that the power-law framework

can be expanded to include convolutions of various distribu-

tions. Distribution moments for any power-law combination of

other random variables [Eq. (4)] yield gamma functions as

in traditional bulk microphysics models. While the func-

tional form of the underlying distributions remains quite

complicated (see Table 1 in supplementary materials), dis-

tribution moments themselves are comparatively simple

and easy to implement in both bulk and bin microphysics

models. Incorporating additional probability distributions in

microphysical model calculations therefore allows NWP and

FIG. 14. Comparison of a typical yt–D relationship from Zawadzki

et al. (2010) and an ellipsoid shape rescaled version using the

methodology from section 4. Error bars (illustrating s5 0.2 m s21)

represent the approximate observed spread shown in Fig. 1 from

Zawadzki et al. (2010). Shaded region represents 61s produced

from the influence of using a distribution of ellipsoids rather than

spheres. A reference size of D 5 7.5mm was used to scale the

new relation and bms
’ 1:80 [a 5 21 using the hybrid area-ratio

parameterization of Heymsfield et al. (2002a)].
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climate models to overcomemathematical limitations imposed

by singular power laws.

Acknowledgments. The author thanks Jerry Harrington,

Hans Verlinde, and Jacob Carlin for their important advice

and suggestions as well as Matthew Kumjian and Alexander

Ryzhkov for their willingness to use their project funding

resources for this independent work. This research was sup-

ported by the U.S. Department of Energy’s Atmospheric

Science ProgramAtmospheric System Research, an Office of

Science, Office of Biological and Environmental Research

program, under Grant DE-SC0018933. Additional funding

was provided by NOAA/Office of Oceanic and Atmospheric

Research under NOAA–University of Oklahoma Cooperative

Agreement NA16OAR4320115, U.S. Department of Commerce

and through the NSF Grant 1841246.

Data availability statement.All of the data used in this paper

can be reproduced using MATLAB codes available from the

author upon request.

APPENDIX

List of Symbols

a a-axis semilength of ellipsoidal ice particle

am Best number–weighted Reynolds number power-

law coefficient [Eq. (9b)]

an Characteristic a-axis length for size spectrum

ao Drag parameter in Eqs. (9a) and (9b)

Acirc Sphere/fractal projected circle area (see Fig. 1)

Apart Projected particle area (see Fig. 1)

Aproj Projected ellipse area (see Fig. 1)

Arjellip Ellipsoid projected ellipse area ratio, Arjellip5
Apart/Aellip 5Arjsphu2Cba

ba u2Cca
ca (see Fig. 1)

Arjsph Sphere/fractal projected area ratio, Arjsph 5
Apart/Acirc (see Fig. 1)

a Sphere/fractal effective density exponent parame-

ter from Heymsfield et al. (2002b) [Eq. (13)]

aAR Area ratio power-law coefficient, aAR 5 2§/p

aba Bivariate beta distribution parameter

am Mass–dimensional power-law prefactor coeffi-

cient for ellipsoid aggregates

ams
Mass–dimensional power-law prefactor coef-

ficient for sphere/fractal aggregates where

ams
5 (4/3)pars

ars Mass–dimensional power-law prefactor coef-

ficient for sphere/fractal aggregates where

ars 5 2brspksn

ay Ellipsoid fall speed–dimensional power-law co-

efficient where ay 5 (1/2)(ha/ra)ama
bm
X

ays Sphere fall speed–dimensional power-law coefficient

aX Ellipsoid Best number power-law coefficient

where aX 5 [8gra/(ph
2
a)]ama

2kc
AR

b b-axis semilength of ellipsoidal ice particle

bm Number-weighted Best number Reynolds number

power-law exponent [Eq. (9a)]

bo Drag parameter in Eqs. (9a) and (9b)

B(a, b) Beta function, B(a, b) 5 [G(a)G(b)]/[G(a 1 b)]

bAR Area ratio power-law exponent, bAR 5 § 2 2

bba Bivariate beta distribution parameter

bcb Bivariate beta distribution parameter

bm Ellipsoid mass–dimensional power-law exponent

where bm 5 31bre

bms
Mass–dimensional power-law exponent for spheres

or equivalently described as a ‘‘fractal dimension’’

where bms
5brs

1 3

bre
Ellipsoid effective-density power-law exponent

brs
Sphere effective-density power-law exponent

where brs
5n(§2 2)1a

by Ellipsoid fall speed–dimensional power-law ex-

ponent where by 5bXbm 2 1

bys
Sphere fall speed–dimensional power-law exponent

bX Ellipsoid Best number power-law exponent

[Eq. (18)] where bX 5 bm 2 kcbAR�
n
k

�
Binomial coefficients

c c-axis semilength of ellipsoidal ice particle

Co Drag parameterization constant [Eqs. (9a) and (9b)]

C1 Drag parameterization constant [Eqs. (9a) and (9b)]

FIG. 15. (a) Comparison of relative mass flux fall speed disper-

sion [based on Eq. (4) from Lo and Passarelli (1982)] for spheres

(red) and for distribution equivalent ellipsoids (blue) based on an

assumed fall speed power-law exponent for spheres (bys
). (b) Ratio

of relative dispersions (ellipsoids/spheres) from (a). Line styles

represent different values of bms
.
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C2 Drag parameterization constant [Eqs. (9a) and (9b)]

D Particle maximum dimension, D 5 2a

Dn Characteristic maximum dimension

d0 Drag parameterization constant [Eqs. (9a) and (9b)]

Dt Khvorostyanov and Curry (2005) turbulence

correction term [Eqs. (9a) and (9b)]

Dytxy Number-weighted fall speed difference approx-

imation for jytx 2 ytyj following Seifert et al.

(2014) (see Table 1)

Dytzxy Reflectivity-weighted fall speed difference ap-

proximation for jytx 2 ytyj following Seifert

et al. (2014) (see Table 1)

Eagg Aggregation efficiency

ha Dynamic viscosity for air

G(x) The gamma function

k Area ratio coefficient in Eq. (13)

kc Area ratio correction exponent Eq. (10)

K(x, y) Aggregation collection kernel

L Maximum span of aggregate projection

L PSD slope parameter

m Ice particle mass

m PSD shape parameter, m 5 n 2 1

Mr rth moment of the particle mass distribution

n(x, t)

n Area ratio exponent parameter in Eq. (13)

where n 5 1.5

N0 Size distribution intercept parameter

Ni Ice particle number mixing ratio

NRe Reynolds number

n(D) or

n(x, t)

Particle size distribution or particle mass

distribution

~n(uba, uca) Bivariate beta ellipsoid aspect ratio probability

distribution

u First Euler angle rotation

ubc Ellipsoid aspect ratio b/c

uba Ellipsoid aspect ratio b/a

c Third Euler angle rotation

ct Khvorostyanov and Curry (2005) turbulence

correction term [Eqs. (9a) and (9b)]

Cproj Projected ellipse area geometric factor

Cba Projected ellipse area geometric factor power-

law exponent

Cca Projected ellipse area geometric factor power-

law exponent

n PSD shape parameter, n 5 m 1 1

qi Ice particle mass mixing ratio

R Particle sphere radius, R 5 a

ra Air density

re Effective ellipsoid aggregate density

rs Effective sphere aggregate density

s Apart power-law coefficient fromMitchell (1996)

[Eq. (11)]

sm Aggregate relative mass flux fall speed dispersion

§ Apart power-law exponent from Mitchell (1996)

[Eq. (11)]

u Second Euler angle rotation

yba Ellipsoid fall speed uba exponent: yba 5xbabm 2
cba/2

yca Ellipsoid fall speed uca exponent: yca 5 xcabm 2
cca/2

Ve Ice ellipsoid volume

yt Terminal particle fall speed

X Best or Davies number

X Number-weighted Best number

xba Best number uba exponent: xba 5 kcCba if using

Eq. (14) and xba 5 kcCba 1 1 if using Eq. (15)

xca Best number uca exponent: xca 5 kcCca if using

Eq. (14) and xca 5 kcCca 1 1 if using Eq. (15)

j A general microphysical quantity, e.g., mass (m)

z A general power-law exponent
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